重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇文章主要讲解了“flink中的聚合算子是什么”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“flink中的聚合算子是什么”吧!
创新互联建站从2013年创立,先为察隅等服务建站,察隅等地企业,进行企业商务咨询服务。为察隅企业网站制作PC+手机+微官网三网同步一站式服务解决您的所有建站问题。
flink中的一个接口org.apache.flink.api.common.functions.AggregateFunction,这个类可以接在window流之后,做窗口内的统计计算。
注意:除了这个接口AggregateFunction,flink中还有一个抽象类AggregateFunction:org.apache.flink.table.functions.AggregateFunction,大家不要把这个弄混淆了,接口AggregateFunction我们可以理解为flink中的一个算子,和MapFunction、FlatMapFunction等是同级别的,而抽象类AggregateFunction是用于用户自定义聚合函数的,和max、min之类的函数是同级的。
比如我们想实现一个类似sql的功能:
select TUMBLE_START(proctime,INTERVAL '2' SECOND) as starttime,user,count(*) from logs group by user,TUMBLE(proctime,INTERVAL '2' SECOND)
这个sql就是来统计一下每两秒钟的滑动窗口内每个人出现的次数,今天我们就以这个简单的sql的功能为例讲解一下flink的aggregate算子,其实就是我们用程序来实现这个sql的功能。
首先看一下聚合函数的接口:
@PublicEvolving
public interface AggregateFunction extends Function, Serializable {
ACC createAccumulator();
ACC add(IN value, ACC accumulator);
ACC merge(ACC a, ACC b);
OUT getResult(ACC accumulator);
}
这个接口AggregateFunction里面有4个方法,我们分别来讲解一下。
首先我们自定义source生成用户的信息
public static class MySource implements SourceFunction>{
private volatile boolean isRunning = true;
String userids[] = {
"4760858d-2bec-483c-a535-291de04b2247", "67088699-d4f4-43f2-913c-481bff8a2dc5",
"72f7b6a8-e1a9-49b4-9a0b-770c41e01bfb", "dfa27cb6-bd94-4bc0-a90b-f7beeb9faa8b",
"aabbaa50-72f4-495c-b3a1-70383ee9d6a4", "3218bbb9-5874-4d37-a82d-3e35e52d1702",
"3ebfb9602ac07779||3ebfe9612a007979", "aec20d52-c2eb-4436-b121-c29ad4097f6c",
"e7e896cd939685d7||e7e8e6c1930689d7", "a4b1e1db-55ef-4d9d-b9d2-18393c5f59ee"
};
@Override
public void run(SourceContext> ctx) throws Exception{
while (isRunning){
Thread.sleep(10);
String userid = userids[(int) (Math.random() * (userids.length - 1))];
ctx.collect(Tuple2.of(userid, System.currentTimeMillis()));
}
}
@Override
public void cancel(){
isRunning = false;
}
}
public static class CountAggregate
implements AggregateFunction,Integer,Integer>{
@Override
public Integer createAccumulator(){
return 0;
}
@Override
public Integer add(Tuple2 value, Integer accumulator){
return ++accumulator;
}
@Override
public Integer getResult(Integer accumulator){
return accumulator;
}
@Override
public Integer merge(Integer a, Integer b){
return a + b;
}
}
/**
* 这个是为了将聚合结果输出
*/
public static class WindowResult
implements WindowFunction,Tuple,TimeWindow>{
@Override
public void apply(
Tuple key,
TimeWindow window,
Iterable input,
Collector> out) throws Exception{
String k = ((Tuple1) key).f0;
long windowStart = window.getStart();
int result = input.iterator().next();
out.collect(Tuple3.of(k, new Date(windowStart), result));
}
}
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream> dataStream = env.addSource(new MySource());
dataStream.keyBy(0).window(TumblingProcessingTimeWindows.of(Time.seconds(2)))
.aggregate(new CountAggregate(), new WindowResult()
).print();
env.execute();
感谢各位的阅读,以上就是“flink中的聚合算子是什么”的内容了,经过本文的学习后,相信大家对flink中的聚合算子是什么这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是创新互联,小编将为大家推送更多相关知识点的文章,欢迎关注!