重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇文章给大家分享的是有关如何对tensorflow的模型保存和调用的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。
为建邺等地区用户提供了全套网页设计制作服务,及建邺网站建设行业解决方案。主营业务为成都网站建设、网站制作、建邺网站设计,以传统方式定制建设网站,并提供域名空间备案等一条龙服务,秉承以专业、用心的态度为用户提供真诚的服务。我们深信只要达到每一位用户的要求,就会得到认可,从而选择与我们长期合作。这样,我们也可以走得更远!我们通常采用tensorflow来训练,训练完之后应当保存模型,即保存模型的记忆(权重和偏置),这样就可以来进行人脸识别或语音识别了。
1.模型的保存
# 声明两个变量 v1 = tf.Variable(tf.random_normal([1, 2]), name="v1") v2 = tf.Variable(tf.random_normal([2, 3]), name="v2") init_op = tf.global_variables_initializer() # 初始化全部变量 saver = tf.train.Saver() # 声明tf.train.Saver类用于保存模型 with tf.Session() as sess: sess.run(init_op) print("v1:", sess.run(v1)) # 打印v1、v2的值一会读取之后对比 print("v2:", sess.run(v2)) #定义保存路径,一定要是绝对路径,且用‘/ '分隔父目录与子目录 saver_path = saver.save(sess, "C:/Users/Administrator/Desktop/tt/model.ckpt") # 将模型保存到save/model.ckpt文件 print("Model saved in file:", saver_path)
2.模型的读取
直接读取模型时,可能会报错,我是用Spyder编译的,可以把Spyder关掉,再重新打开,就可以读取数据了。原因可能是:在模型保存时将变量初始化了。
import tensorflow as tf # 使用和保存模型代码中一样的方式来声明变量 v1 = tf.Variable(tf.random_normal([1, 2]), name="v1") v2 = tf.Variable(tf.random_normal([2, 3]), name="v2") saver = tf.train.Saver() # 声明tf.train.Saver类用于保存模型 with tf.Session() as sess: saver.restore(sess, "C:/Users/Administrator/Desktop/tt/model.ckpt") # 即将固化到硬盘中的Session从保存路径再读取出来 print("v1:", sess.run(v1)) # 打印v1、v2的值和之前的进行对比 print("v2:", sess.run(v2)) print("Model Restored")
感谢各位的阅读!关于“如何对tensorflow的模型保存和调用”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。