重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

Python有哪些隐藏技巧

本篇内容主要讲解“Python有哪些隐藏技巧”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Python有哪些隐藏技巧”吧!

创新互联建站基于成都重庆香港及美国等地区分布式IDC机房数据中心构建的电信大带宽,联通大带宽,移动大带宽,多线BGP大带宽租用,是为众多客户提供专业服务器主机托管报价,主机托管价格性价比高,为金融证券行业服务器托管,ai人工智能服务器托管提供bgp线路100M独享,G口带宽及机柜租用的专业成都idc公司。

1. ... 对象

没错,你没看错,就是 "..."

在Python中 ... 代表着一个名为 Ellipsis 的对象。根据官方说明,它是一个特殊值,通常可以作为空函数的占位符,或是用于Numpy中的切片操作。

如:

def my_awesome_function():
...

等同于:

def my_awesome_function():
Ellipsis

当然,你也可以使用pass或者字符串作为占位符:

def my_awesome_function():
pass
def my_awesome_function():
"An empty, but also awesome function"

他们最终的效果都是相同的。

接下来讲讲...对象是如何在Numpy中体现出作用的,创建一个 3x3x3 的矩阵数组,然后获取所有最内层矩阵的第二列:

>>> import numpy as np
>>> array = np.arange(27).reshape(3, 3, 3)
>>> array
array([[[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8]],
 [[ 9, 10, 11],
[12, 13, 14],
[15, 16, 17]],
 [[18, 19, 20],
[21, 22, 23],
[24, 25, 26]]])

为了获取最层矩阵的第二列,传统方法可能是这样的:

>>> array[:, :, 1]
array([[ 1, 4, 7],
 [10, 13, 16],
 [19, 22, 25]])

如果你会用...对象,则是这样的:

>>> array[..., 1]
array([[ 1, 4, 7],
 [10, 13, 16],
 [19, 22, 25]])

不过请注意, ... 对象仅可用于Numpy,不适用于Python内置数组。

2.解压迭代对象

解压迭代对象是一个非常方便的特性:

>>> a, *b, c = range(1, 11)
>>> a
1
>>> c
10
>>> b
[2, 3, 4, 5, 6, 7, 8, 9]

或者是:

>>> a, b, c = range(3)
>>> a
0
>>> b
1
>>> c
2

同理,与其写这样的代码:

>>> lst = [1]
>>> a = lst[0]
>>> a
1
>>> (a, ) = lst
>>> a
1

你不如跟解压迭代对象一样,进行更优雅的赋值操作:

>>> lst = [1]
>>> [a] = lst
>>> a
1

虽然这看起来有点蠢,但就我个人来看,比前一种写法更优雅一些。

3.展开的艺术

数组展开有各种千奇百怪的姿势,比如说:

>>> l = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
>>> flattened = [elem for sublist in l for elem in sublist]
>>> flattened
[1, 2, 3, 4, 5, 6, 7, 8, 9]

如果你对reduce和lambda有一定了解,建议使用更优雅的方式:

>>> from functools import reduce
>>> reduce(lambda x,y: x+y, l)
[1, 2, 3, 4, 5, 6, 7, 8, 9]

reduce和lambda组合起来,就能针对 l 数组内的每个子数组做拼接操作。

当然,还有更神奇的方式:

>>> sum(l, [])
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> # 其实相当于 [] + [1, 2, 3] + [4, 5, 6] + [7, 8, 9]

没错,这样对二维数组做sum操作,就能使二维数组内的每个元素做“加”法拼接起来。

同样的道理,如果你对三位数组做sum操作,就能使其变为二维数组,此时再对二维数组做sum操作,就能展开为一维数组。

虽然这个技巧很出色,但我并不推荐使用,因为可读性太差了。

4.下划线 _ 变量

每当你在Python解释器,IPython或Django Console中运行表达式时,Python都会将输出的值绑定到 _ 变量中:

>>> nums = [1, 3, 7]
>>> sum(nums)
11
>>> _
11
>>>

由于它是一个变量,你可以随时覆盖它,或像普通变量一样操作它:

>>> 9 + _
20
>>> a = _
>>> a
20

5.多种用途的else

很多人都不知道,else 可以被用于许多地方,除了典型的 if else, 我们还可以在循环和异常处理里用到它。

循环

如果需要判断循环里是否处理了某个逻辑,通常情况下会这么做:

found = False
a = 0
while a < 10:
if a == 12:
found = True
a += 1
if not found:
print("a was never found")

如果引入else,我们可以少用一个变量:

a = 0
while a < 10:
if a == 12:
break
a += 1
else:
print("a was never found")
异常处理

我们可以在 try ... except ... 中使用 else 编写未捕获到异常时的逻辑:

In [13]: try:
...: {}['lala']
...: except KeyError:
...: print("Key is missing")
...: else:
...: print("Else here")
...:
Key is missing

这样,如果程序没有异常,则会走else分支:

In [14]: try:
...: {'lala': 'bla'}['lala']
...: except KeyError:
...: print("Key is missing")
...: else:
...: print("Else here")
...:
Else here

到此,相信大家对“Python有哪些隐藏技巧”有了更深的了解,不妨来实际操作一番吧!这里是创新互联网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!


文章标题:Python有哪些隐藏技巧
标题来源:http://cqcxhl.cn/article/poicie.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP