重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

R语言如何实现T检验

这篇文章主要介绍了R语言如何实现T检验,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。

创新互联服务项目包括于田网站建设、于田网站制作、于田网页制作以及于田网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,于田网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到于田省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!

T检验是用来检验两组数据之间均值是否有差异的一种方法,比如下面我们用到的数据包括20个男生和20个女生的体重数据。

试验设计是自然群体下(人们正常生活,没有可以控制自己的体重)探究

  • 男生和女生之间的体重是否有差异?
  • 或者男生的体重是否大于女生?
  • 再或者男生的体重是否小于女生?

于是在理想的群体中随机抽取20个男生和20个女生测量体重,记录数据。

这时候的统计检验方法就可以选择T检验。

示例数据集来自datarium包的genderweight加载数据data('genderweight',package='datarium')查看数据前六行head(genderweight)数据集是一个数据框,将男生和女生的数据拆分成两个向量

library(dplyr)
women_weight <- genderweight %>%
  filter(group == "F") %>%
  pull(weight)
women_weight
men_weight <- genderweight %>%
  filter(group == "M") %>%
  pull(weight)
men_weight
 

这里我新学到的函数是pull(),作用是用管道符把数据传递给他然后指定列名就直接转换成向量了。

如果要检验均值是否相等

t.test(women_weight,men_weight)
 

输出结果是

 Welch Two Sample t-test

data:  women_weight and men_weight
t = -20.791, df = 26.872, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -24.53135 -20.12353
sample estimates:
mean of x mean of y 
 63.49867  85.82612 
 

t检验的零假设是两组数据均值相等,结果中p-value小于0.05,拒绝原假设,接受备择假设alternative hypothesis,备择假设是true difference in means is not equal to 0,翻译过来就是平均值差异不等于0,就是均值有差异。 这个做的是Welch Two Sample t-test,如果要做学生式T检验,可以在t.test()函数里加var.equal=T参数

> t.test(women_weight,men_weight,var.equal=T)

 Two Sample t-test

data:  women_weight and men_weight
t = -20.791, df = 38, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -24.50140 -20.15349
sample estimates:
mean of x mean of y 
 63.49867  85.82612 
 

如果要看男生体重是否比女生大,需要加alternative参数

t.test(men_weight,women_weight,var.equal=T,alternative = "greater")
 

男生的数据放第一个参数,女生的数据方第二个参数,alternative = "greater"是指备择假设是男生体重大于女生,对应的零假设就是男生体重不大于女生。 结果

 Two Sample t-test

data:  men_weight and women_weight
t = 20.791, df = 38, p-value < 2.2e-16
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
 20.51693      Inf
sample estimates:
mean of x mean of y 
 85.82612  63.49867 
 

p-value小于0.05拒绝原假设,所以结论就是男生体重大于女生

接下来是结果展示,T检验的结果通常可以用箱线图来展示

library(ggplot2)
ggplot(genderweight,aes(x=group,y=weight))+
  geom_boxplot(aes(fill=group))+
  geom_jitter(aes(color=group))+
  geom_segment(aes(x=1,xend=1,y=70,yend=100))+
  geom_segment(aes(x=2,xend=2,y=96,yend=100))+
  geom_segment(aes(x=1,xend=2,y=100,yend=100))+
  annotate('text',x=1.5,y=102,label="p-value< 2.2e-16")+
  theme_bw()
 
R语言如何实现T检验
image.png

感谢你能够认真阅读完这篇文章,希望小编分享的“R语言如何实现T检验”这篇文章对大家有帮助,同时也希望大家多多支持创新互联,关注创新互联行业资讯频道,更多相关知识等着你来学习!


网站标题:R语言如何实现T检验
链接地址:http://cqcxhl.cn/article/ppdeie.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP