重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
如何使用Tensorflow模型实现预测?针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。
为武安等地区用户提供了全套网页设计制作服务,及武安网站建设行业解决方案。主营业务为网站制作、做网站、武安网站设计,以传统方式定制建设网站,并提供域名空间备案等一条龙服务,秉承以专业、用心的态度为用户提供真诚的服务。我们深信只要达到每一位用户的要求,就会得到认可,从而选择与我们长期合作。这样,我们也可以走得更远!模型文件:
预测图片:
这里直接贴代码,都有注释,应该很好理解
import tensorflow as tf import inference image_size = 128 # 输入层图片大小 # 模型保存的路径和文件名 MODEL_SAVE_PATH = "model/" MODEL_NAME = "model.ckpt" # 加载需要预测的图片 image_data = tf.gfile.FastGFile("./data/test/d.png", 'rb').read() # 将图片格式转换成我们所需要的矩阵格式,第二个参数为1,代表1维 decode_image = tf.image.decode_png(image_data, 1) # 再把数据格式转换成能运算的float32 decode_image = tf.image.convert_image_dtype(decode_image, tf.float32) # 转换成指定的输入格式形状 image = tf.reshape(decode_image, [-1, image_size, image_size, 1]) # 定义预测结果为logit值大的分类,这里是前向传播算法,也就是卷积层、池化层、全连接层那部分 test_logit = inference.inference(image, train=False, regularizer=None) # 利用softmax来获取概率 probabilities = tf.nn.softmax(test_logit) # 获取大概率的标签位置 correct_prediction = tf.argmax(test_logit, 1) # 定义Savar类 saver = tf.train.Saver() with tf.Session() as sess: sess.run((tf.global_variables_initializer(), tf.local_variables_initializer())) # 加载检查点状态,这里会获取最新训练好的模型 ckpt = tf.train.get_checkpoint_state(MODEL_SAVE_PATH) if ckpt and ckpt.model_checkpoint_path: # 加载模型和训练好的参数 saver.restore(sess, ckpt.model_checkpoint_path) print("加载模型成功:" + ckpt.model_checkpoint_path) # 通过文件名得到模型保存时迭代的轮数.格式:model.ckpt-6000.data-00000-of-00001 global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1] # 获取预测结果 probabilities, label = sess.run([probabilities, correct_prediction]) # 获取此标签的概率 probability = probabilities[0][label] print("After %s training step(s),validation label = %d, has %g probability" % (global_step, label, probability)) else: print("模型加载失败!" + ckpt.model_checkpoint_path)
运行输出结果:
(标签为3,概率为0.984478)
标签字典:
3对应小写d,识别正确。
其他的图片的预测结果:
预测图片1:
标签字典:
关于如何使用Tensorflow模型实现预测问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注创新互联行业资讯频道了解更多相关知识。